In recent years, the evolution of lithium-ion batteries (LIB) has been propelled by the growing demand for energy storage systems that are lightweight, have high energy density, and are long-lasting. This review article examines the use of self-terminated oligomers with hyperbranched architecture (STOBA) as a key electrode additive for the superior performance of LIBs. STOBA has been found to have excellent electrochemical properties, including high specific capacity, low impedance, and good cycling stability when used as an additive in electrode materials. The article discusses the process of synthesis and characterization of STOBA materials, including their potential applications in LIBs as electrode material additives. The article also discusses current research on the optimization of STOBA materials for LIBs, including the use of different solvents, monomers, and initiators. Overall, the review concludes that STOBA materials possess huge potential as a next-generation additive for LIB safety.