Current evidence suggests that migratory animals extract map information from the geomagnetic field for true navigation. The sensory basis underlying this feat is elusive, but presumably involves magnetic particles. A common experimental manipulation procedure consists of pre-treating animals with a magnetic pulse. This aims at re-magnetising particles to alter the internal representation of the external field prior to a navigation task. While pulsing provoked deflected bearings in laboratory experiments, analogous studies with free-flying songbirds yielded inconsistent results. Here, we pulsed European robins (Erithacus rubecula), being medium-distance migrants, at an offshore stopover site during spring migration and monitored their free-flight behaviour with a regional-scale tracking system. We found no pulse effect on departure probability, nocturnal departure timing, or departure direction, in agreement with results on a long-distance migrant released at the same site in autumn. This necessitates a reassessment of the importance of geomagnetic maps for migratory decisions for free-flying birds.Summary statementMagnetic pulse pre-treatment disturbs geomagnetic map usage of birds in lab environments. However, our free-flying birds show no effect, suggesting geomagnetic map information is less important in the natural environment.