We investigate flexibility and problem solving in skilled action. We conducted a field study of mountain bike riding that required a learner rider to cope with major changes in technique and equipment. Our results indicate that relatively inexperienced individuals can be capable of fairly complex 'on-the-fly' problem solving which allows them to cope with new conditions. This problem solving is hard to explain for classical theories of skill because the adjustments are too large to be achieved by automatic mechanisms and too complex and rapid to be achieved by cognitive processes as they are usually understood. A recent theory, Mesh, can explain these results because it posits that skill-specific cognitive abilities develop during skill learning and that control typically involves an interplay between cognitive and automatic mechanisms. Here we develop Mesh further, providing a detailed explanation for these problem solving abilities. We argue that causal representation, metacognitive awareness and other forms of performance awareness combine in the formulation and control of action strategies. We also argue that the structure of control present in this case is inconsistent with Bratman's model of intentions, and that, in the face of high uncertainty and risk, intentions can be much more labile than Bratman recognises. In addition,
we found limitations and flaws in problem solving which illuminate the representations involved. Finally, we highlight the crucial role of social and cultural learning in the development of complex skills.