How does the brain maintain spatial attention despite the retinal displacement of objects by saccades? A possible solution is to use the vector of an upcoming saccade to compensate for the shift of objects on eye-centered (retinotopic) brain maps. In support of this hypothesis, previous studies have revealed attentional effects at the future retinal locus of an attended object, just before the onset of saccades. A critical yet unresolved theoretical issue is whether predictively remapped attentional effects would persist long enough on eye-centered brain maps, so no external input (goal, expectation, reward, memory, etc.) is needed to maintain spatial attention immediately following saccades. The present study examined this issue with inhibition of return (IOR), an attentional effect that reveals itself in both world-centered and eye-centered coordinates, and predictively remaps before saccades. In the first task, a saccade was introduced to a cueing task ("nonreturn-saccade task") to show that IOR is coded in world-centered coordinates following saccades. In a second cueing task, two consecutive saccades were executed to trigger remapping and to dissociate the retinal locus relevant to remapping from the cued retinal locus ("return-saccade" task). IOR was observed at the remapped retinal locus 430-ms following the (first) saccade that triggered remapping. A third cueing task ("no-remapping" task) further revealed that the lingering IOR effect left by remapping was not confounded by the attention spillover. These results together show that predictive remapping leaves a robust attentional trace on eye-centered brain maps. This retinotopic trace is sufficient to sustain spatial attention for a few hundred milliseconds following saccades.Keywords Eye movements . Inhibition of return . Predictive remapping . Spatial attention . Visual stability Rapid eye movements (saccades) shift objects on the retina 2-3 times a second while we are awake (Rayner, 1998). How does the brain maintain a stable and continuous perception of the external world despite the retinal displacement of objects by saccades? One possibility is that the brain represents objects in world-centered or spatiotopic coordinates (e.g., d'Avossa et al., 2007;Turi & Burr, 2012;Zimmermann et al., 2011). Following each saccade, the shifted retinal image * Zhiguo Wang