Abstract-Marrocchi et al. (2005) reported that low-temperature fractions of heavy noble gases were largely removed upon pyridine treatment of the Orgueil CI meteorite. As pyridine is known to induce the swelling of the macromolecular network of organic matter, they concluded that the low-temperature phase Q is macromolecular organic carbon. However, Busemann et al. (2008) showed that pyridine had no significant effect on the noble gas contents for other very primitive meteorites, such as CM and CR. Therefore, we prepared an HF-HCl residue and the pyridine-treated residue of Orgueil, and re-examined the results of Marrocchi et al. (2005) by analyzing all noble gases. We confirmed that heavy noble gases are surely removed by the pyridine treatment, but the degree of the loss of heavy noble gases is generally small, and is even smaller for the lighter noble gases. Furthermore, we could not observe the evidence of Xe isotopic ratios by removing only phase Q after the pyridine treatment. We further prepared the HF-HCl residue and the pyridine-treated residue of the Allende CV3 meteorite and performed noble gas analyses. For Allende, there is no significant change in the elemental abundances after the pyridine treatment. These results suggest that only Orgueil is special, and it is likely that the gas loss of the Orgueil residue is due to the loss of some kind of organic matter that was formed and that adsorbed the fractionated Q and HL gases during the aqueous alteration within the parent body of Orgueil.