Non-volcanic hot springs are generally believed to originate through circulation of meteoric or buried sea water heated at depth. In this study, we report the geochemical characteristics of the Arima and Takarazuka hot spring waters, known as Arima-type deep brine, in a forearc region of southwestern Japan. We examine 14 water samples to determine the levels of 12 solute elements or components and the isotopic ratios of H, He, C, O, and Sr, and we perform correlation analysis of the data to deduce the source materials and origin of the deep brine. Moreover, we perform numerical modeling of oxygen and hydrogen isotopic fractionation along subducting slabs to examine the composition of slab-derived fluid as a possible candidate of the deep brine. The results suggest that the high salinity and solute concentrations with characteristic oxygen, hydrogen, carbon, and strontium isotope compositions, as well as high He ratios, can be explained by a dehydrated component of the subducted Philippine Sea slab. Hence, this study may provide an invaluable understanding of geofluid processes over a significant depth range.