The manuscript presents the optical properties of directly deposited films of gold nanoparticles (AuNPs) prepared by the Ultrasonic Spray Pyrolysis (USP) technology. Four samples were produced, with AuNP deposition times on the glass substrate of 15 min, 30 min, 1 h and 4 h. The morphological characterisation of the deposited films showed that the size of the first deposited AuNPs was between 10 and 30 nm, while, with a longer duration of the deposition process, larger clusters of AuNPs grew by coalescence and aggregation. The prepared layers were characterised optically with Ultraviolet–visible spectroscopy (UV–vis) and ellipsometry. The ellipsometric measurements showed an increasingly denser and thicker effective thickness of the AuNP layers. The extinction spectra displayed a clear local surface plasmonic resonance (LSPR) signature (peak 520–540 nm), indicating the presence of isolated particles in all the samples. For all AuNP layers, the imaginary part of the parallel and perpendicular components of the anisotropic dielectric function was dominated by a central peak at around 2.2 eV, corresponding to the LSPR of isolated particles, and a high-energy shoulder due to Au interband transitions. It was shown that, as the density of particles increased, the extinction cross-section grew over the whole spectral range where measurements are taken. Thus, the response can be explained with an enhanced electromagnetic response between the AuNPs that can be connected to the increase in particle density, but also by the formation of clusters and irregular structures.