The incidence and response properties of nociresponsive neurons, their locations relative to spinothalamic terminals, and their relations to cytoarchitectonic borders were studied in the lateral thalamus of the squirrel monkey. Nociceptive neurons were found in ventral posterior inferior nucleus (VPI), in the lateral and medial nuclei (VPL and VPM) of the ventral posterior complex (VP = VPL + VPM), as well as the posterior complex (PO). The overall incidence of nociresponsive cells was 19% (50 of 270 cells). The proportion of nociresponsive neurons within VPI was 50% (23 of 46), 38% in PO (8 of 21), and 10% in VP (19 of 203). Most nociresponsive cells (90%) in VP were of wide-dynamic- range type, while within VPI 43% of nociresponsive cells were nociceptive-specific type. Most of these nociresponsive cells had thermal and mechanical responses, and a small number also responded to cooling. The receptive fields of nociresponsive cells in VPL were in continuity, in both size and body location, with surrounding low- threshold units. The receptive fields of VPI and PO nociresponsive cells were larger than those in VPL. The probability of encountering nociresponsive cells located within 100 microns of spinothalamic terminations was high in VPI (73%) and low in VPL (33%). On the other hand, the probability of encountering non-nociceptive cells located within 100 microns of spinothalamic terminals was low in both VPI (20%) and VPL (26%). The results indicate segregation of nociresponsive cell types across VP, VPI, and PO and suggest that VPI, and perhaps PO, is an important region for discriminative processing and perception of painful stimuli.