Background
The lamprey spinal cord is a well-characterized vertebrate network that could facilitate our understanding of anesthetic action. We tested several hypotheses concerning the lamprey’s clinical application to anesthesia, and the sites/mechanisms of anesthetic action.
Methods
In isolated lamprey spinal cords, minimum immobilizing concentrations (MIC) were determined for halothane, isoflurane, sevoflurane, desflurane, propofol, or the nonimmobilizer F6 (1,2-dichlorohexafluorocyclobutane)- applied during D-glutamate-induced fictive swimming or noxious tail stimulation. Isoflurane and propofol effects on fictive swimming were tested in the presence and absence of strychnine and/or picrotoxin.
Results
Volatile anesthetic MICs were clinically comparable. Isoflurane MIC for fictive swimming and noxious stimulus-evoked movement were the same. F6 did not produce immobility, but decreased the amplitude and phase lag of fictive swimming. Isoflurane decreased fictive swimming cycle frequency, amplitude, autocorrelation, rostrocaudal phase lag, and coherence. Strychnine and picrotoxin elicited only disorganized motor activity under isoflurane and caused small increases in MIC. Propofol’s effects differed from isoflurane for all locomotor rhythm variables except amplitude. The propofol MIC was much larger in lampreys compared to mammals. However, picrotoxin reversed propfol-induced immobility by reinitiating coordinated locomotor activity and increasing MIC >8-fold.
Conclusions
The lamprey spinal cord is a relevant and tractable vertebrate network model for anesthetic action. Isoflurane disrupts interneuronal locomotor networks. Gamma-aminobutyric acid A and glycine receptors play marginal roles in isoflurane-induced immobility in lampreys. Propofol’s selective gamma-aminobutyric acid AA-receptor-mediated immobilizing mechanism is conserved in lampreys. The differential immobilizing mechanisms of isoflurane versus propofol reflect those in mammals, and further suggest different network modes of immobilizing action.