Ultradian rhythms, such as sleep-wake periodicities, during the night might represent basic rest-activity cycles of organisms that are fundamental to the temporal organization and synchronization of behavior throughout the day. However, in contrast to circadian rhythms, little is known about the underlying oscillators and molecular mechanisms of higher-frequency rhythms. A fundamental step for the understanding of the mechanisms of these latter periodicities is the analysis of variation in sleep-wake cycles in free-living animals, which can help in estimating the relative importance of genetic and environmental influence on the rhythmicity. We analyzed variation in the level of rhythmicity and period length (τ) of behaviorally defined sleep-wake cycles in a natural population of blue tits Cyanistes caeruleus. Our results indicate that the expression of periodicity in sleep-wake patterns, but not τ, has a strong individual-specific basis. The within-individual repeatability estimate of the expression of periodicity was .45 (95% confidence interval: .35-.55) when data from males and females were combined. In addition, periodicity was influenced by specific environmental factors, such as night temperature, seasonal date, and age of the individual. Most strikingly, low nighttime temperature negatively affected periodicity of sleep-wake patterns, potentially via a hypothermic response of the birds. Our results further suggest that τ is influenced by photoperiod. Blue tits showed longer sleep-wake rhythms when the nights were longer. These observations suggest a genetic basis for the incidence of rhythmic sleep-wake behavior in addition to environmental modifications of their specific expression.