The reflectors of a linear solar concentrator investigated in this work consisted of two plane mirrors (2MCC), and they were designed in such a way that made all radiation within the acceptance angle (θa) arrive on flat-plate absorber, after less than two reflections. To investigate the performance of an east–west aligned 2MCC-based photovoltaic (PV) system (2MCPV), a mathematical procedure was suggested based on the three-dimensional radiation transfer and was validated by the ray-tracing analysis. Analysis indicated that the performance of 2MCPV was dependent on the geometry of 2MCC, the reflectivity of mirrors (ρ), and solar resources in a site, thus, given θa, an optimal geometry of 2MCC for maximizing the annual collectible radiation (ACR) and annual electricity generation (AEG) of 2MCPV in a site could be respectively found through iterative calculations. Calculation results showed that when the ρ was high, the optimal design of 2MCC for maximizing its geometric concentration (Cg) could be utilized for maximizing the ACR and AEG of 2MCPV. As compared to similar compound parabolic concentrator (CPC)-based PV systems, the 2MCPV with the tilt-angle of the aperture yearly fixed (1T-2MCPV), annually generated more electricity when the ρ was high; and the one with the tilt-angle adjusted yearly four times at three tilts (3T-2MCPV), performed better when θa < 25° and ρ > 0.7, even in sites with poor solar resources.