Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining 2023
DOI: 10.1145/3580305.3599446
|View full text |Cite
|
Sign up to set email alerts
|

Node Classification Beyond Homophily: Towards a General Solution

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(2 citation statements)
references
References 11 publications
0
2
0
Order By: Relevance
“…Leskovec 2017; Veličković et al 2018). Recent GCN approaches over heterophilic graphs can be grouped into multihop-based ones (Abu-El-Haija et al 2019;Zhu et al 2020;Jin et al 2021b;Wang and Derr 2021;Wang et al 2022b), ranking-based ones (Liu, Wang, and Ji 2021;Wang et al 2022a;Yang et al 2022), and the ones using GCN architecture refinement (Bo et al 2021;Yang et al 2021;Suresh et al 2021a;Yan et al 2021;Luan et al 2022;Xu et al 2023;Li, Kim, and Wang 2023;Zheng et al 2023). These methods have achieved remarkable success in graph node classification.…”
Section: Related Work Graph Convolution Networkmentioning
confidence: 99%
See 1 more Smart Citation
“…Leskovec 2017; Veličković et al 2018). Recent GCN approaches over heterophilic graphs can be grouped into multihop-based ones (Abu-El-Haija et al 2019;Zhu et al 2020;Jin et al 2021b;Wang and Derr 2021;Wang et al 2022b), ranking-based ones (Liu, Wang, and Ji 2021;Wang et al 2022a;Yang et al 2022), and the ones using GCN architecture refinement (Bo et al 2021;Yang et al 2021;Suresh et al 2021a;Yan et al 2021;Luan et al 2022;Xu et al 2023;Li, Kim, and Wang 2023;Zheng et al 2023). These methods have achieved remarkable success in graph node classification.…”
Section: Related Work Graph Convolution Networkmentioning
confidence: 99%
“…UGCN and SimP-GCN employ a similarity preservation scheme for structure learning on heterophilic graphs and BM-GCN employs a selective aggregation on structure via a block-guided strategy. We also compare our model with a recently proposed spectral-based method ALT-GCN (Xu et al 2023). Settings: We implement our method by Pytorch and Pytorch Geometric and use Adam Optimizer on all datasets with the learning rate as 0.001.…”
Section: Experiments Datasets Baselines and Settingsmentioning
confidence: 99%