Abstract. The discrete, the quantum, and the continuous calculus of variations, have been recently unified and extended by using the theory of time scales. Such unification and extension is, however, not unique, and two approaches are followed in the literature: one dealing with minimization of delta integrals; the other dealing with minimization of nabla integrals. Here we review a more general approach to the calculus of variations on time scales that allows to obtain both delta and nabla results as particular cases.