Cerebral ischemia remains the most frequent cause of death and quality-of-life impairments due to neurological deficits, and accounts for the majority of total healthcare costs. However, treatments for cerebral ischemia are limited. Over the last decade, bone marrow stromal cell (BMSC) therapy has emerged as a particularly appealing option, as it is possible to help patients even when initiated days or even weeks after the ischemic insult. BMSCs are a class of multipotent, self-renewing cells that give rise to differentiated progeny when implanted into appropriate tissues. Therapeutic effects of BMSC treatment for ischemic stroke, including sensory and motor recovery, have been reported in pre-clinical studies and clinical trials. In this article, we review the recent progress in BMSC-based therapy for ischemic stroke, focusing on the route of delivery and pre-processing of BMSCs. Selecting an optimal delivery route is of particular importance. The ideal approach, as well as the least risky, for translational applications still requires further identification. Appropriate preprocessing of BMSCs or combination therapy has the benefi t of achieving the maximum possible restoration. Further pre-clinical studies are required to determine the time-window for transplantation and the appropriate dosage of cells.