Physics of Nonlinear Transport in Semiconductors 1980
DOI: 10.1007/978-1-4684-3638-9_17
|View full text |Cite
|
Sign up to set email alerts
|

Noise and Diffusion of Hot Carriers

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
4
0
2

Year Published

1981
1981
2000
2000

Publication Types

Select...
4
3

Relationship

0
7

Authors

Journals

citations
Cited by 21 publications
(6 citation statements)
references
References 35 publications
0
4
0
2
Order By: Relevance
“…There exist several alternative generalizations of the FDT for extended bulk systems [43][44][45]. We mention the best known, which defines the non-equilibrium noise temperature T n pivotal to the interpretation of device-noise data [44].…”
Section: F Fluctuation and Dissipationmentioning
confidence: 99%
See 2 more Smart Citations
“…There exist several alternative generalizations of the FDT for extended bulk systems [43][44][45]. We mention the best known, which defines the non-equilibrium noise temperature T n pivotal to the interpretation of device-noise data [44].…”
Section: F Fluctuation and Dissipationmentioning
confidence: 99%
“…Expressions for the power density P and hot-electron component S g are derived in the Appendix. The thermally driven currentcurrent spectral density, taken over a uniform sample of length L x and total volume Ω, is given by [44] S(E, ω)…”
Section: Application To High-field Noisementioning
confidence: 99%
See 1 more Smart Citation
“…Cette relation, donnée dans la référence [3], avait déjà été établie pour des types particuliers de sources de bruit [4,5]. En intégrant l'équation (11) dans la tranche àx' = Ax, on obtient la relation liant la source de bruit locale Kx(r, f ) dans la direction x, et le courant de bruit SIx(r, f ), dans la direction x, à travers la tranche située en r : La méthode expérimentale de détermination de la source locale de bruit découle de la relation (12) [6,7]. Puisque Tn est reliée à SI (cf.…”
unclassified
“…Soit I1Yx l'impédance différentielle, à la fréquence f, de la tranche Ax. On obtient [6,7], à partir de l'équa-tion (7) :…”
unclassified