We present a theoretical and experimental investigation of shot noise suppression in gallium arsenide and silicon p − n junctions due the to effect of generation-recombination phenomena. In particular, the availability of the cross-correlation technique and of ultra-low-noise amplifiers has allowed us to significantly extend, down to 10 pA, the range of bias current values for which results were available in the literature. To provide a quantitative understanding of the observed V -shape noise behavior, we have extended the Shockley-Read-Hall model for the trap-assisted generation-recombination mechanism. Such a model has represented the theoretical background for the performed Monte Carlo noise simulations, which have provided good agreement with the experimental results.