Low-temperature (LT) plasmas have a substantial role in diverse scientific areas and modern technologies. Their stochastic and nonlinear dynamics strongly determine the efficiency and effectiveness of LT plasma-based procedures involved in applications such as etching, spectrochemical analysis, deposition of thin films on substrates, and others. Understanding and controlling complex behaviors in LT plasmas have become a serious research problem. Modeling their behavior is also a major problem. However, models based on hydrodynamic equations have proven to be useful in their study. In this chapter, we expose the use of fluid models taking into account relevant kinetic processes to describe out from equilibrium LT plasma behavior. Selected topics on the stability, stochastic, and nonlinear dynamics of LT plasmas are discussed. These include the coexistence of diffusive and wave-like particle transport and delayed feedback control of oscillatory regime with relaxation.