Abstract. We introduce the open-source tool noisi for the forward and inverse modeling of ambient seismic cross-correlations with spatially varying
source spectra. It utilizes pre-computed databases of Green's functions to represent seismic wave propagation between ambient seismic sources and
seismic receivers, which can be obtained from existing repositories or imported from the output of wave propagation solvers. The tool was built
with the aim of studying ambient seismic sources while accounting for realistic wave propagation effects. Furthermore, it may be used to guide the
interpretation of ambient seismic auto- and cross-correlations, which have become preeminent seismological observables, in light of nonuniform
ambient seismic sources. Written in the Python language, it is accessible for both usage and further development and efficient enough to
conduct ambient seismic source inversions for realistic scenarios. Here, we introduce the concept and implementation of the tool, compare its model
output to cross-correlations computed with SPECFEM3D_globe, and demonstrate its capabilities on selected use cases: a comparison of observed
cross-correlations of the Earth's hum to a forward model based on hum sources from oceanographic models and a synthetic noise source inversion
using full waveforms and signal energy asymmetry.