2021
DOI: 10.48550/arxiv.2110.02180
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Noisy Feature Mixup

Abstract: We introduce Noisy Feature Mixup (NFM), an inexpensive yet effective method for data augmentation that combines the best of interpolation based training and noise injection schemes. Rather than training with convex combinations of pairs of examples and their labels, we use noise-perturbed convex combinations of pairs of data points in both input and feature space. This method includes mixup and manifold mixup as special cases, but it has additional advantages, including better smoothing of decision boundaries … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 49 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?