Molecular self-assembly on surfaces is dictated by the delicate balance between intermolecular and moleculeÀsurface interactions. For many insulating surfaces, however, the moleculeÀsurface interactions are weak and rather unspecific. Enhancing these interactions, on the other hand, often puts a severe limit on the achievable structural variety. To grasp the full potential of molecular self-assembly on these application-relevant substrates, therefore, requires strategies for anchoring the molecular building blocks toward the surface in a way that maintains flexibility in terms of intermolecular interaction and relative molecule orientation. Here, we report the design of a site-specific anchor functionality that provides strong anchoring toward the surface, resulting in a well-defined adsorption position. At the same time, the anchor does not significantly interfere with the intermolecular interaction, ensuring structural flexibility. We demonstrate the success of this approach with three molecules from the class of shape-persistent oligo(p-benzamide)s adsorbed onto the calcite(10.4) surface. These molecules have the same aromatic backbone with iodine substituents, providing the same basic adsorption mechanism to the surface calcium cations. The backbone is equipped with different functional groups. These have a negligible influence on the molecular adsorption on the surface but significantly change the intermolecular interaction. We show that distinctly different molecular structures are obtained that wet the surface due to the strong linker while maintaining variability in the relative molecular orientation. With this study, we thus provide a versatile strategy for increasing the structural richness in molecular self-assembly on insulating substrates.