This Minireview covers the latest developments of chemosensors based on transition-metal receptors and organic fluorophores with specific binding sites for the luminescent detection and recognition of iodide in aqueous media and real samples. In all selected examples within the last decade (made-post 2010), the iodide sensing and recognition is probed by monitoring real-time changes of the fluorescence or phosphorescence properties of the chemosensors. This review highlights effective strategies to iodide sensing from a structural approach where the iodide recognition/sensing process, through supramolecular interactions as coordination bonds, hydrogen bonds, halogen bonds and electrostatic interactions, is transduced into an optical change easily measurable. The selective iodide sensing is an active field of research with global interest due to the importance of iodide in biological, medicinal, industrial, environmental and chemical processes.