The intricate interplay between macrophage polarization and placenta vascular dysfunction has garnered increasing attention in the context of placental inflammatory diseases. This study delves into the complex relationship between macrophage polarization within the placenta and its potential impact on the development of vascular dysfunction and inflammatory conditions. The placenta, a crucial organ in fetal development, relies on a finely tuned balance of immune responses for proper functioning. Disruptions in this delicate equilibrium can lead to pathological conditions, including inflammatory diseases affecting the fetus and newborn infant. We explored the interconnectedness between placental macrophage polarization and its relevance to lung macrophages, particularly in the context of early life lung development. Bronchopulmonary dysplasia (BPD), the most common chronic lung disease of prematurity, has been associated with abnormal immune responses, and understanding the role of macrophages in this context is pivotal. The investigation aims to shed light on how alterations in placental macrophage polarization may contribute to lung macrophage behavior and, consequently, influence the development of BPD. By unraveling the intricate mechanisms linking macrophage polarization, placental dysfunction and BPD, this research seeks to provide insights that could pave the way for targeted therapeutic interventions. The findings may offer novel perspectives on preventing and managing placental and lung-related pathologies, ultimately contributing to improved maternal and neonatal health outcomes.