Complex Light and Optical Forces XIV 2020
DOI: 10.1117/12.2545948
|View full text |Cite
|
Sign up to set email alerts
|

Non-conservative instabilities in optical vacuum traps

Abstract: Particles held in optical tweezers are commonly thought to be at thermodynamic equilibrium with their environment. Under this assumption the elastic energy of the trap is equal to the thermal energy. As a result the variance of the particle position is completely independent of viscosity and inversely proportional to the optical power in the trap. Here we show that these conditions only hold for very high symmetry cases e.g. perfectly spherical particles in unaberrated, linearly polarized Gaussian traps. Here … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 16 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?