Thermal videos provide a privacy-preserving yet information-rich data source for remote health monitoring, especially for respiration rate (RR) estimation. This paper introduces an end-to-end deep learning approach to RR measurement using thermal video data. A detection transformer (DeTr) first finds the subject’s facial region of interest in each thermal frame. A respiratory signal is estimated from a dynamically cropped thermal video using 3D convolutional neural networks and bi-directional long short-term memory stages. To account for the expected phase shift between the respiration measured using a respiratory effort belt vs. a facial video, a novel loss function based on negative maximum cross-correlation and absolute frequency peak difference was introduced. Thermal recordings from 22 subjects, with simultaneous gold standard respiratory effort measurements, were studied while sitting or standing, both with and without a face mask. The RR estimation results showed that our proposed method outperformed existing models, achieving an error of only 1.6 breaths per minute across the four conditions. The proposed method sets a new State-of-the-Art for RR estimation accuracy, while still permitting real-time RR estimation.