This paper proposes a differential filtering method for the identification of modal parameters of bridges from unmanned aerial vehicle (UAV) measurement. The determination of the modal parameters of bridges is a key issue in bridge damage detection. Accelerometers and fixed cameras have disadvantages of deployment difficulty. Hence, the actual displacement of a bridge may be obtained by using the digital image correlation (DIC) technology from the images collected by a UAV. As drone movement introduces false displacement into the collected images, the homography transformation is commonly used to achieve geometric correction of the images and obtain the true displacement of the bridge. The homography transformation is not always applicable as it is based on at least four static reference points on the plane of target points. The proposed differential filtering method does not request any reference points and will greatly accelerate the identification of the modal parameters. The displacement of the points of interest is tracked by the DIC technology, and the obtained time history curves are processed by differential filtering. The filtered signals are input into the modal analysis system, and the basic modal parameters of the bridge model are obtained by the operational modal analysis (OMA) method. In this paper, the power spectral density (PSD) is used to identify the natural frequencies; the mode shapes are determined by the ratio of the PSD transmissibility (PSDT). The identification results of three types of signals are compared: UAV measurement with differential filtering, UAV measurement with homography transformation, and accelerometer-based measurement. It is found that the natural frequencies recognized by these three methods are almost the same. This paper demonstrates the feasibility of UAV-differential filtering method in obtaining the bridge modal parameters; the problems and challenges in UAV measurement are also discussed.