Non-oriented electrical steel sheets are the most commonly used material for the manufacturing of magnetic cores for electric motors and generators. The microstructure and texture of the steel after final annealing have a significant effect on the magnetic properties of the lamination core. To investigate the effect of cold rolling and annealing on the magnetic properties of the steel sheets, a 0.9 wt% Si non-oriented electrical steel was cold rolled at different angles to the hot rolling direction (HRD) and annealed at various temperatures (600°C to 750°C) to produce dissimilar microstructures. The progress of recrystallization was characterized by electron backscatter diffraction (EBSD), and the magnetic response of the steel at various stages of recrystallization was evaluated by magnetic Barkhausen noise (MBN). A number of MBN parameters, e.g. the root mean square, the smoothed envelope, the peak, the full width at half maximum (FWHM) of the envelope, the time integral of the MBN signals and the MBN energy, were analyzed with respect to the fraction of recrystallization during annealing. The results show that cold rolling at different angles to the hot rolling direction induces various deformation microstructures and stored energies, which, in turn, lead to considerably different recrystallization behaviours during annealing. The difference in recrystallization of these materials is also reflected in the MBN parameters.