2022
DOI: 10.23960/jtep-l.v11i2.231-241
|View full text |Cite
|
Sign up to set email alerts
|

Non-Destructive Measurement of Rice Amylose Content Based on Image Processing and Artificial Neural Networks (ANN) Model

Abstract: The purpose of this study was to develop a method of measuring the amylose content of rice using image processing techniques and an Artificial Neural Network (ANN) model. The rice samples came from six varieties, namely Way Apo Buru, Mapan P05, IR-64, Cibogo, Inpari IR Nutri Zinc, and Inpari 33. The amylose content was measured by laboratory tests and the color intensity was measured based on the RGB (Red, Green, Blue). The ANN model will correlate the RGB color intensity as input with the amylose content as t… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
4
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(5 citation statements)
references
References 17 publications
0
4
0
1
Order By: Relevance
“…Model matematis juga digunakan untuk memprediksi nilai observasi yang tidak diukur secara langsung dengan instrumen yang tersedia. Hal ini terjadi karena kendala biaya, waktu, tenaga, dan kendala lainnya yang tidak memungkinkan bagi peneliti (Saputra et al, 2022).…”
Section: Pendahuluanunclassified
“…Model matematis juga digunakan untuk memprediksi nilai observasi yang tidak diukur secara langsung dengan instrumen yang tersedia. Hal ini terjadi karena kendala biaya, waktu, tenaga, dan kendala lainnya yang tidak memungkinkan bagi peneliti (Saputra et al, 2022).…”
Section: Pendahuluanunclassified
“…Meanwhile, Kala, Samada, and Paketih varieties tend to be lighter in the color of seeds and cause the presence of genes that regulate aleurone (Aminah et al, 2019). This convinced Saputra et al (2022) that each variety had color and amylose content characteristics. Amylose content determines the physical appearance of rice in the form of color and texture, so rice is classified into high amylose content (>25%), medium (20-24%), and low (<20%) (Luna et al, 2015).…”
Section: Starch Content and Amylosementioning
confidence: 99%
“…Artificial neural networks have been widely used in various fields such as engineering, medicine and finance (Cabaneros et al, 2019). Application ANN in agricultural engineering research are increasing in many areas including plant growth modeling (Aji et al, 2020), prediction rice amylose content (Saputra et al, 2022), prediction of biodiesel yield (Haryanto et al, 2020), and so on.…”
Section: Artificial Neural Network (Ann)mentioning
confidence: 99%