Abstract:The energy-dependence of the neutron cross section provides vastly different contrast mechanisms than polychromatic neutron radiography if neutron energies can be selected for imaging applications. In recent years, energy-resolved neutron imaging (ERNI) with epi-thermal neutrons, utilizing neutron absorption resonances for contrast as well as for quantitative density measurements, was pioneered at the Flight Path 5 beam line at LANSCE and continues to be refined. Here we present event centroiding, i.e., the determination of the center-of-gravity of a detection event on an imaging detector to allow sub-pixel spatial resolution and apply it to the many frames collected for energy-resolved neutron imaging at a pulsed neutron source. While event centroiding was demonstrated at thermal neutron sources, it has not been applied to energy-resolved neutron imaging, where the energy resolution requires to be preserved, and we present a quantification of the possible resolution as a function of neutron energy. For the 55 µm pixel size of the detector used for this study, we found a resolution improvement from~80 µm to~22 µm using pixel centroiding while fully preserving the energy resolution.