Flesh firmness in sweet cherries is determined using the measurement of normalized deformation force, i.e., determining the required force for a distance equal to 5 or 10% of the diameter of the cherries per millimeter. However, a firmness method involving a defined distance is quite simple and suitable for easy applications. Hence, our study focuses on the impact of fruit physiology under various and fixed distances. To assess the firmness evaluation, two sweet cherry cultivars (Canada Giant and Regina) were selected and subjected to three different levels of compression distance equal to 1%, 5%, 10% of the fruit’s small thickness dimension along with a consistent compression distance of 0.16 mm. There was a strong correlation between panelists’ preferences and the fruit that had been subjected to both a 1% deformation force and a fixed distance of 0.16 mm within each cultivar. Physiological traits, membrane integrity, and the metabolome of the fruit in these categories were mostly unaffected by the control (0%), or 1%, deformation force, as shown by clustering and PCA analysis. The control and 1% deformation force groups showed similar patterns, contrary to those of the 5% and 10% deformation force groups. Given these considerations, a fixed distance of 0.16 mm and a minimal 1% deformation force possess the potential to be employed and implemented for monitoring the firmness of sweet cherries during postharvest preservation.