2024
DOI: 10.1007/s00013-024-01982-2
|View full text |Cite
|
Sign up to set email alerts
|

Non-disjoint strong external difference families can have any number of sets

Sophie Huczynska,
Siaw-Lynn Ng

Abstract: Strong external difference families (SEDFs) are much-studied combinatorial objects motivated by an information security application. A well-known conjecture states that only one abelian SEDF with more than 2 sets exists. We show that if the disjointness condition is replaced by non-disjointness, then abelian SEDFs can be constructed with more than 2 sets (indeed any number of sets). We demonstrate that the non-disjoint analogue has striking differences to, and connections with, the classical SEDF and arises na… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 11 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?