The parallel replica dynamics, originally developed by A.F. Voter, efficiently simulates very long trajectories of metastable Langevin dynamics. We present an analogous algorithm for discrete time Markov processes. Such Markov processes naturally arise, for example, from the time discretization of a continuous time stochastic dynamics. Appealing to properties of quasistationary distributions, we show that our algorithm reproduces exactly (in some limiting regime) the law of the original trajectory, coarsened over the metastable states.KEY WORDS Markov chain, parallel computing, parallel replica dynamics, quasistationary distributions, metastabilityReceived XXX