2018
DOI: 10.1103/physreva.98.012119
|View full text |Cite
|
Sign up to set email alerts
|

Non-Hermitian dynamics of slowly varying Hamiltonians

Abstract: We develop a theoretical description of non-Hermitian time evolution that accounts for the breakdown of the adiabatic theorem. We obtain closed-form expressions for the time-dependent state amplitudes, involving the complex eigenenergies as well as inter-band Berry connections calculated using basis sets from appropriately-chosen Schur decompositions. Using a two-level system as an example, we show that our theory accurately captures the phenomenon of "sudden transitions", where the system state abruptly jumps… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
12
0
3

Year Published

2019
2019
2023
2023

Publication Types

Select...
6
2

Relationship

0
8

Authors

Journals

citations
Cited by 24 publications
(15 citation statements)
references
References 66 publications
0
12
0
3
Order By: Relevance
“…The Hamiltonian varies slowly in time which suggests the use of the quantum adiabatic theorem. However, the conventional Hermitian derivation relies on the vanishing of both Re(ε(τ )), the real part of the instantaneous eigen-energy, and Im(i Ψ L n |∂ t Ψ R n ), the imaginary part of the Berry connection [74,75]. (Here, L(R) denotes the left(right) eigenstates of the Hamiltonian.)…”
Section: Appendix E: the Full Many-body Systemmentioning
confidence: 99%
“…The Hamiltonian varies slowly in time which suggests the use of the quantum adiabatic theorem. However, the conventional Hermitian derivation relies on the vanishing of both Re(ε(τ )), the real part of the instantaneous eigen-energy, and Im(i Ψ L n |∂ t Ψ R n ), the imaginary part of the Berry connection [74,75]. (Here, L(R) denotes the left(right) eigenstates of the Hamiltonian.)…”
Section: Appendix E: the Full Many-body Systemmentioning
confidence: 99%
“…Таким образом, эффективный гамильтониан стал неэрмитовым аналогично рассматриваемым в работах [1][2][3]14].…”
Section: постановка задачи и эффективный гамильтонианunclassified
“…Эти задачи также можно отнести к классу задач с неэрмитовыми гамильтонианами. Однако в недавних работах [1][2][3]14] ставятся другие вопросы: нахождение собственных функций неэрмитовых гамильтонианов для дальнейшего описания оператора эволюции таких систем.…”
Section: Introductionunclassified
See 1 more Smart Citation
“…Since the ground state is unique within the parameter space of Eq. (1), the system should stay in the ground state for a finite time [64] (see Supplementary Section II.B). The measurable quantity in quantum experiments is [65][66][67].…”
Section: Quantum Phase Diagram and Dynamical Phase Transitionmentioning
confidence: 99%