Strongly interacting nonequilibrium systems are of great fundamental interest, yet their inherent complexity make them notoriously hard to analyze. We demonstrate that the dynamics of the Bose-Hubbard model, which by itself evades solvability, can be solved exactly at any interaction strength in the presence of loss tuned to a rate matching the hopping amplitude. Remarkably, the full solvability of the corresponding Liouvillian, and the integrability of the pertinent effective non-Hermitian Hamiltonian, survives the addition of disorder and generic boundary conditions. By analyzing the Bethe ansatz solutions we find that even weak interactions change the qualitative features of the system, leading to an intricate dynamical phase diagram featuring non-Hermitian Mott-skin effects, disorder induced localization, highly degenerate exceptional points, and a Bose glasslike phase of fragmented condensates. We discuss realistic implementations of this model with cold atoms.
Published by the American Physical Society
2024