Digital watermarking is a growing research area to mark digital content (image, audio, video, etc.) by embedding information into the content itself. This technique opens or provides additional and useful features for many application fields (like DRM, annotation, integrity proof and many more). The role of watermarking algorithm evaluation (in a broader sense benchmarking) is to provide a fair and automated analysis of a specific approach if it can fulfill certain application requirements and to perform a comparison with different or similar approaches. Today most algorithm designers use their own methodology and therefore the results are hardly comparable. Derived from the variety of actually presented evaluation procedures in this paper, firstly we introduce a theoretical framework for digital robust watermarking algorithms where we focus on the triangle of robustness, transparency and capacity. The main properties and measuring methods are described. Secondly, a practical environment shows the predefined definition and introduces the practical relevance needed for robust audio watermarking benchmarking. Our goal is to provide a more partial precise methodology to test and compare watermarking algorithms. The hope is that watermarking algorithm designers will use our introduced methodology for testing their algorithms to allow a comparison with existing algorithms more easily. Our work should be seen as a scalable and improvable attempt for a formalization of a benchmarking methodology in the triangle of transparency, capacity and robustness.Abstract. Robust digital watermarking systems are important building blocks in applications such as fingerprinting, dispute resolving or direct proofs of authorship, where the presence of a watermark serves as evidence for some fact, e.g., illegal redistribution or authorship. A major drawback of (symmetric) watermarking schemes in this context is that proving the presence of a watermark requires disclosing security critical detection information (watermark, detection key, original data) to a (potentially malicious) verifying party. This may completely jeopardise the security of embedded watermarks once this information is revealed. To overcome this problem recent work on secure watermark detection proposes cryptographic proofs that perform the detection on concealed detection information. The proposed solutions focus on correlation-based detection and can be applied to any watermarking scheme whose detection criteria can be expressed as a polynomial relation between the quantities required for the detection.In this paper, we present in-depth guidelines for the adoptions required to transform well-established watermarking schemes by Cox et al and Piva et al into secure cryptographic proofs in the non-interactive setting. Moreover, we present our implementation, its performance results and the corresponding tool we have developed for this purpose. Our results underpin the practicability of the cryptographic approach.Abstract. Digital Rights Management (DRM) enforces the ri...