Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Today, Internet of Things (IoT) has provided intelligent interactions between sensors, smart devices, actuators, and cloud-based applications to ease human life. Currently, IoT-based connectivity management systems use computer-assisted learning methods to increase learning level and better understanding of the curriculums for students in universities, schools and research centers. On the other hand, virtual connectivity management systems are applied to facilitate teaching and learning methods under taken of pandemic effects. Because, data mining methods have important effect to enhancement and navigate IoT-based connectivity management systems, this paper presents a technical analysis on Artificial Intelligence (AI) approaches for connectivity management systems in IoT environments. This paper provides a comprehensive perspective on vehicular communication systems, Internet of Vehicles (IoV) methods and Vehicular Ad Hoc Network (VANET) environments that have evaluated using machine learning, fuzzy logic and intelligent algorithms. Also, applied evaluation metrics to predict and detect efficient connectivity methods, succeed learning models and enhancement of IoT-based connectivity management systems are discussed and analyzed for existing AI approaches. Finally, new research directions and emerging challenges are outlined to improve the performance of advanced IoT-based connectivity management systems.
Today, Internet of Things (IoT) has provided intelligent interactions between sensors, smart devices, actuators, and cloud-based applications to ease human life. Currently, IoT-based connectivity management systems use computer-assisted learning methods to increase learning level and better understanding of the curriculums for students in universities, schools and research centers. On the other hand, virtual connectivity management systems are applied to facilitate teaching and learning methods under taken of pandemic effects. Because, data mining methods have important effect to enhancement and navigate IoT-based connectivity management systems, this paper presents a technical analysis on Artificial Intelligence (AI) approaches for connectivity management systems in IoT environments. This paper provides a comprehensive perspective on vehicular communication systems, Internet of Vehicles (IoV) methods and Vehicular Ad Hoc Network (VANET) environments that have evaluated using machine learning, fuzzy logic and intelligent algorithms. Also, applied evaluation metrics to predict and detect efficient connectivity methods, succeed learning models and enhancement of IoT-based connectivity management systems are discussed and analyzed for existing AI approaches. Finally, new research directions and emerging challenges are outlined to improve the performance of advanced IoT-based connectivity management systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.