Abstract. Flax fibre was modified with acetylation. The influence of the acetylation on the structure and properties of flax fibre were investigated as well as modified flax fibre reinforced polypropylene composites were also prepared. The catalyst was used to accelerate acetylation reaction rate. Flax fibre was characterised after modification. Surface morphology, moisture absorption property, components content, degree of polymerisation, crystallinity of cellulose and thermal stability of flax fibres were studied. Due to acetylation, the flax fibre surface morphology and moisture resistance properties improved remarkably. Flax fibre (modified and unmodified) reinforced polypropylene composites were fabricated with 30 wt% fibre loading. The mechanical properties were investigated for those composites. Tensile and flexural strengths of composites were found to increase with increasing degree of acetylation up to 18% and then decreased. Charpy impact strengths of composites were found to decrease with increasing degree of acetylation. Owing to addition of coupling agent (maleated polypropylene -MAH), the tensile and flexural strength properties were found to increase in between 20 to 35% depending on degree of acetylation.