The 13 C NMR chemical shift of sp 3 carbon atoms situated in the R position relative to the double bond in acyclic alkenes was estimated with multilayer feedforward artificial neural networks (ANNs) and multilinear regression (MLR), using as structural descriptors a topo-stereochemical code which characterizes the environment of the resonating carbon atom. The predictive ability of the two models was tested by the leave-20%-out cross-validation method. The neural model provides better results than the MLR model both in calibration and in cross-validation, demonstrating that there exists a nonlinear relationship between the structural descriptors and the investigated 13 C NMR chemical shift and that the neural model is capable to capture such a relationship in a simple and effective way. A comparison between a general model for the estimation of the 13 C NMR chemical shift and the ANN model indicates that general models are outperformed by more specific models, and in order to improve the predictions a possible way is to develop environment-specific models. The approach proposed in this paper can be used in automated spectra interpretation or computer-assisted structure elucidation to constrain the number of possible candidates generated from the experimental spectra.