By means of collision models (CMs) where the environment is simulated by a collection of ancillas consisting of two entangled qubits, we investigate the effects of entanglement in the environment on the non-Markovianity of an open quantum system. Two CMs are considered in this study, in the first one the open quantum system S directly collides with the environment, while in the second one the system interacts with two intermediate qubits which, in turn, are coupled to the environment. We show that it is possible to enhance the non-Markovianity by environment entanglement in both models. In particular, in the second model, we show that the initial state of the auxiliary qubits can also affect the non-Markovianity of the system and there exists the optimal combination of the initial environmental state and the initial state of auxiliary qubits. In this case, the non-Markovianity can be greatly enhanced.