Insulin-dependent diabetes meflitus is a multigenic autimmune disease, for which one of the best animal models is the nonobese diabetic (NOD) mouse strain. In both humans and NOD mice, major histocompatibility complex genes are implicated as risk factors in the disease process. Other susceptibility genes are also involved, and a number have been mapped in the mouse to specific chromosomal locations. To identify further susceptibility genes, diabetic backcross mice, produced after crossing NOD/Lt to the nondiabetic strains SJL and C57BL/6 (B6), were examined for markers not previously associated with disease susceptibility. Linkage was found to loci on chromosomes 4 and 14. Ofthe c ate loci on chromosome 4, the gene encoding the Na+/H+ exchanger-1, Nhe-i, was the most likely, since the NOD allele was different from that of both nondiabetic strains. NOD lymphocytes were found to have a higher level of Na+/H+ exchange activity than lymphocytes from either B6 or SJL mice. Since the chromosome 4 susceptibility gene is recessive, the B6 allele should prevent diabetes.This prediction was tested in fourth-generation backcross mice, selected for retention ofthe B6 allele atNhe-l. Mice homozygous forNhe-i developed diabetes after cyclophosphamide treatment, but heterozygotes were largely protected from disease. These results implicate the Na+/H+ exchanger (antiporter) in the development of type 1 diabetes and may provide a screening test for at-risk individuals as well as offering prospects for disease prevention.