2006
DOI: 10.1111/j.1365-2478.2006.00554.x
|View full text |Cite
|
Sign up to set email alerts
|

Non‐monotone spectral projected gradient method applied to full waveform inversion

Abstract: A B S T R A C TThe seismic inversion problem is a highly non-linear problem that can be reduced to the minimization of the least-squares criterion between the observed and the modelled data. It has been solved using different classical optimization strategies that require a monotone descent of the objective function. We propose solving the full-waveform inversion problem using the non-monotone spectral projected gradient method: a low-cost and low-storage optimization technique that maintains the velocity valu… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2

Citation Types

0
2
0
2

Year Published

2008
2008
2024
2024

Publication Types

Select...
3
2
1

Relationship

0
6

Authors

Journals

citations
Cited by 13 publications
(4 citation statements)
references
References 46 publications
0
2
0
2
Order By: Relevance
“…This method is applicable to convex constrained problems in which the projection on the feasible set is easy to compute. Since its appearance, the method has been intensively used in applications [3,6,10,14,15,19,20,24,26,35,42,50,59,63,64,65,69]. Moreover, it has been the object of several spectral-parameter modifications, alternative nonmonotone strategies have been suggested, convergence and stability properties have been elucidated and it has been combined with other algorithms for different optimization problems.…”
Section: Introductionmentioning
confidence: 99%
“…This method is applicable to convex constrained problems in which the projection on the feasible set is easy to compute. Since its appearance, the method has been intensively used in applications [3,6,10,14,15,19,20,24,26,35,42,50,59,63,64,65,69]. Moreover, it has been the object of several spectral-parameter modifications, alternative nonmonotone strategies have been suggested, convergence and stability properties have been elucidated and it has been combined with other algorithms for different optimization problems.…”
Section: Introductionmentioning
confidence: 99%
“…It has been intensively used in many different applied problems [9,11,13,22,29,43,44,52,58,60,65]. Several interesting parameter modifications were proposed in the papers [24,23,26,27,33,41,55,64].…”
Section: Introductionmentioning
confidence: 99%
“…Desde o seu surgimento, o método SPG tem sido muito utilizado em aplicações de diversasáreas tais como física [4,24,51,59,60], geofísica [6,31,61], química [34], engenharia [23], entre outras [8,11,12,17,18,44,55]. Em [6], o SPG foi adaptado para resolver problemas de tomografia de reflexão sísmica e aplicado tanto a problemas com restrições de caixa quanto problemas sem restrições de um conjunto de testes baseado em dados sintéticos.…”
Section: Capítulo O Método Do Gradiente Espectral Projetadounclassified
“…Verificouse nos experimentos que o método SPGé uma técnica robusta na solução desses problemas quandoé feita uma definição adequada da região viável convexa. Em [61], o método SPGé utilizado para resolver o problemas de inversão sísmica, que até então era resolvido utilizandose diferentes estratégias de otimização clássicas que necessitam de decréscimo monótono da função objetivo. Os resultados dos testes apontam que a aplicação com SPG apresentou desempenho melhor do que com o método de gradiente clássico pois reduziu o número de avaliações de função e valores residuais.…”
Section: Capítulo O Método Do Gradiente Espectral Projetadounclassified