Abstract:Grauert showed that it is possible to construct complete Kähler metrics on the complement of complex analytic sets in a domain of holomorphy. In this note, we study the holomorphic sectional curvatures of such metrics on the complement of a principal divisor in C n , n ≥ 1.In addition, we also study how this metric and its holomorphic sectional curvature behave when the corresponding principal divisors vary continuously.
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.