Abstract.A speech denoising method based on Non-Negative Matrix Factorization (NMF) is presented in this paper. With respect to previous related works, this paper makes two contributions. First, our method does not assume a priori knowledge about the nature of the noise. Second, it combines the use of the Kullback-Leibler divergence with sparseness constraints on the activation matrix, improving the performance of similar techniques that minimize the Euclidean distance and/or do not consider any sparsification. We evaluate the proposed method for both, speech enhancement and automatic speech recognitions tasks, and compare it to conventional spectral subtraction, showing improvements in speech quality and recognition accuracy, respectively, for different noisy conditions.