Non-parametric Bayesian density estimation for biological sequence space with applications to pre-mRNA splicing and the karyotypic diversity of human cancer
Abstract:Density estimation in sequence space is a fundamental problem in machine learning that is of great importance in computational biology. Due to the discrete nature and large dimensionality of sequence space, how best to estimate such probability distributions from a sample of observed sequences remains unclear. One common strategy for addressing this problem is to estimate the probability distribution using maximum entropy, i.e. calculating point estimates for some set of correlations based on the observed sequ… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.