Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. We present a constructive identification proof of p-linear decompositions of q-way arrays. The analysis is based on the joint spectral decomposition of a set of matrices. It has applications in the analysis of a variety of latent-structure models, such as q-variate mixtures of p distributions. As such, our results provide a constructive alternative to Allman, Matias and Rhodes [2009]. The identification argument suggests a joint approximate-diagonalization estimator that is easy to implement and whose asymptotic properties we derive. We illustrate the usefulness of our approach by applying it to nonparametrically estimate multivariate finite-mixture models and hidden Markov models.
Terms of use:
Documents in1. Introduction. Longitudinal data are since long known to be a powerful tool to establish the nonparametric identification of latent structures. Early results on the identifiability of multivariate finite mixtures of Bernouilli distributions were derived by Green [1951] and Anderson [1954], and have been extended by Kasahara and Shimotsu [2009]. More recently, Hall and Zhou [2003] showed that mixtures of two arbitary distributions are generally identified as soon as three measurements are available, provided the component distributions are linearly independent and the outcomes satisfy a conditional-independence restriction. Allman, Matias and Rhodes [2009] have demonstrated that this result carries over to mixtures of more components. Their approach can be applied to a more general class of latent structures that feature some form of conditional independence, such as hidden Markov models with finite state spaces (see Petrie [1969] for seminal work on this) and to random-graph models. We note that, although the availability of two measurements can suffice in problems featuring additive structures, the work of Henry, Kitamura and Salanié [2013] shows that two measurements will only deliver set-identification of parameters in more general latent-structure models. Li and Vuong [1998], Bordes, Mottelet andVandekerkhove [2006], and Gassiat and Rousseau [2013], among others, present results for additive models.The work of Allman, Matias and Rhodes [2009] builds heavily on algebraic results for multiway arrays due to Kruskal [1976;1977]. Although widely applicable, this approach is not constructive. Given identification, some authors have set out to develop methods to estimate latent structures. Benaglia, Chauveau and Hunter [2009] and Levine, Hunter and...