2008
DOI: 10.1111/j.1467-9868.2007.00635.x
|View full text |Cite
|
Sign up to set email alerts
|

Non-Parametric Small Area Estimation Using Penalized Spline Regression

Abstract: The paper proposes a small area estimation approach that combines small area random effects with a smooth, non-parametrically specified trend. By using penalized splines as the representation for the non-parametric trend, it is possible to express the non-parametric small area estimation problem as a mixed effect model regression. The resulting model is readily fitted by using existing model fitting approaches such as restricted maximum likelihood. We present theoretical results on the prediction mean-squared … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

3
133
0
8

Year Published

2009
2009
2017
2017

Publication Types

Select...
4
4

Relationship

0
8

Authors

Journals

citations
Cited by 158 publications
(144 citation statements)
references
References 36 publications
3
133
0
8
Order By: Relevance
“…Das et al (2004) show that the approximation is also valid when the variance components are estimated by ML and REML. Singh et al (2005) extend the Prasad-Rao MSE estimator for spatio-temporal models, and very recently, Opsomer et al (2008) justify the approximation in the P-spline context. These authors propose the following estimator for the MSE…”
Section: Mean Squared Error Estimationmentioning
confidence: 98%
“…Das et al (2004) show that the approximation is also valid when the variance components are estimated by ML and REML. Singh et al (2005) extend the Prasad-Rao MSE estimator for spatio-temporal models, and very recently, Opsomer et al (2008) justify the approximation in the P-spline context. These authors propose the following estimator for the MSE…”
Section: Mean Squared Error Estimationmentioning
confidence: 98%
“…Opsomer (2008) menggunakan P-Spline untuk mengestimasi area kecil dengan menambahkan pengaruh acak area kecil pada persamaan (7), sehingga diperoleh [8]: e = + Y Xβ + Zγ + Du Penduga terbaik untuk variabel prediktor γ dan u diperoleh dengan meminimumkan MSE dari γ dan u . Sehingga diperoleh prediktor linier tak bias terbaik (BLUP) untuk γ dan u sebagai berikut: …”
Section: Small Area Estimation Dengan Pendekatan Regresi P-splineunclassified
“…Sehingga pendekatan nonparametrik menjadi alternatif pilihan. Salah satu pendekatan nonparametrik yang digunakan adalah Regresi Penalized Spline (P-Spline) [8].…”
unclassified
See 1 more Smart Citation
“…The linear mixed effects model is useful for estimating the small area means efficiently under normality assumptions. Nonlinear SAE can be found in Opsomer et al (2008), Salvati et al (2011), Shim and Hwang (2012) and . In this paper, we consider the situation when the estimate to be produced is proportion at small area level.…”
Section: Introductionmentioning
confidence: 99%