2019
DOI: 10.1115/1.4045501
|View full text |Cite
|
Sign up to set email alerts
|

Non-Reciprocal Wave Transmission in a Bilinear Spring-Mass System

Abstract: Significant amplitude-independent and passive non-reciprocal wave motion can be achieved in a one dimensional (1D) discrete chain of masses and springs with bilinear elastic stiffness. Some fundamental asymmetric spatial modulations of the bilinear spring stiffness are first examined for their non-reciprocal properties. These are combined as building blocks into more complex configurations with the objective of maximizing non-reciprocal wave behavior. The non-reciprocal property is demonstrated by the signific… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
11
0
1

Year Published

2021
2021
2024
2024

Publication Types

Select...
8

Relationship

2
6

Authors

Journals

citations
Cited by 25 publications
(13 citation statements)
references
References 26 publications
0
11
0
1
Order By: Relevance
“…With the same incident wave of (12), we have for the interval τ ∈ (τ j , τ j+1 ), j ∈ N + , that T = f − R and R = sin(τ + θ) − e −(τ −τj) tan θ sin(τ j + θ) cos θ. (18) Note that θ of eq. (15) depends on the sign of R through eq.…”
Section: B Bilinear Springmentioning
confidence: 99%
See 1 more Smart Citation
“…With the same incident wave of (12), we have for the interval τ ∈ (τ j , τ j+1 ), j ∈ N + , that T = f − R and R = sin(τ + θ) − e −(τ −τj) tan θ sin(τ j + θ) cos θ. (18) Note that θ of eq. (15) depends on the sign of R through eq.…”
Section: B Bilinear Springmentioning
confidence: 99%
“…To realize the geometric asymmetry, we simply use a bilinear and a linear spring in series and connected by a mass. This idea comes from our previous bilinear spring-mass chain system with spatial stiffness modulation in [18], showing nonreciprocal pulse propagation. Additionally, we present an interesting reciprocal phenomenon of an oscillatory incident wave converted into a transmitted wave with particle displacement of a single sign.…”
Section: Introductionmentioning
confidence: 99%
“…This is the analog of time-modulation of the permittivity in photonic crystals [45] by allowing a periodic evolution of the flexural rigidity, i.e., D(t + T ) = D(t), with a temporal period T . Regarding a possible experiment, in order to change the elastic parameters directly, one can add shunted external circuits, with tunable electrical properties (resistance, capacitance, and inductance) (see SM [43] for more details on the piezo-electric potential modelling [46][47][48][49][50][51][52]). Equation ( 1) shall be re-written in time-domain and in the one-dimensional (1D) scenario…”
Section: Modulation For Flexural-gravity Waves a Time-modulation For Flexural-gravity Wavesmentioning
confidence: 99%
“…Изучению нелинейного распространения продольных упругих волн в разномодульных твердых телах без дисперсии (и без учета отражения от разрывов) посвящено довольно много работ [8][9][10][11][12][13][14][15][16][17]. В таких средах нелинейный режим распространения имеет место только для разнополярных волн, а однополярные одиночные импульсы распространяются линейно, с постоянными, но различными скоростями, зависящими от их полярности.…”
Section: Introductionunclassified