Semaglutide (GLP-1 agonist) was approved for treating obesity. Although the effects on weight loss and metabolism are known, the responses of adipocytes to semaglutide are yet limited. C57BL/6 male mice (n = 20/group) were fed a control diet (C) or a high-fat (HF) diet for 16 weeks and then separated into four groups (n = 10/group) for an additional four weeks: C, C diet and semaglutide, HF, and HF diet and semaglutide. Epididymal white adipose tissue (eWAT) and subcutaneous white adipose tissue (sWAT) fat pads were studied with biochemistry, immunohistochemistry/fluorescence, stereology, and reverse transcription-quantitative polymerase chain reaction. In obese mice, semaglutide reduced the fat pad masses (eWAT, −55%; sWAT, −40%), plasmatic cytokines, and proinflammatory gene expressions: tumor necrosis factor-alpha (−60%); interleukin (IL)-6 (−55%); IL-1 beta (−40%); monocyte chemoattractant protein-1 (−90%); and leptin (−80%). Semaglutide also lessened endoplasmic reticulum (ER) stress genes of activating transcription factor-4 (−85%), CCAAT enhancer-binding protein homologous protein (−55%), and growth arrest and DNA damage-inducible gene 45 (−45%). The obese mice's adipocyte hypertrophy and macrophage infiltration were equally reduced by semaglutide. Semaglutide enhanced multiloculation and uncoupled protein 1 (UCP1) labeling in obese mice: peroxisome proliferator-activated receptor-alpha (+560%) and gamma (+150%), fibronectin type III domain-containing protein 5 (+215%), peroxisome proliferator-activated receptor-alpha coactivator (+110%), nuclear respiratory factor 1 (+260%), and mitochondrial transcription factor A (+120%). Semaglutide also increased thermogenetic gene expressions for the browning phenotype maintenance: beta-3 adrenergic receptor (+520%), PR domain containing 16 (+90%), and Ucp1 (+110%). In conclusion, semaglutide showed significant beneficial effects beyond weight loss, directly on fat pads and adipocytes