The biomass and abundance of large jellyfish (Cnidaria: Scyphozoa, Hydrozoa) was estimated and their seasonal and interannual dynamics was studied based on the data of trawl surveys conducted by the Pacific Research Fisheries Center (TINRO Center) in the Sea of Okhotsk, Bering Sea, Sea of Japan, and the Northwestern Pacific Ocean (NWPO) in 1991-2009. Most of the jellyfish biomass (over 95%) in the Sea of Okhotsk, Bering Sea, and NWPO was formed by Chrysaora spp., Cyanea capillata, Aequorea spp., Phacello phora camtschatica, and Aurelia limbata. The same species along with Calycopsis nematophora predominated in abundance in the Bering Sea and NWPO, while Ptychogena lactea, C. capillata, and Chrysaora spp. were most abundant in the Sea of Okhotsk. In the northwestern Sea of Japan, Aurelia aurita, C. capillata, and Aequorea spp. predominated both in abundance and biomass. Generally, the jellyfish abundance reached the highest values in the summer and fall and decreased abruptly in the winter. Meanwhile, the seasonal dynamics proved to be specific for each species and were manifested in some of them by reaching maximum values at various periods of the warm season, whereas the other (Tima sachalinensis and P. lactea) showed the reverse pattern of seasonal variations, with the highest abundance in cold months. Jellyfish biomass and abundance varied greatly from year to year, which was related to the short lifecycle and alternation between sexual and asexual generations, in which reproductive success was predetermined by various environmental factors. In the fall, year to year fluctuations of the relative biomass could increase by ten times. In