2020
DOI: 10.48550/arxiv.2006.15634
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Non-Stationary Multi-layered Gaussian Priors for Bayesian Inversion

Abstract: In this article, we study Bayesian inverse problems with multi-layered Gaussian priors. We first describe the conditionally Gaussian layers in terms of a system of stochastic partial differential equations. We build the computational inference method using a finite-dimensional Galerkin method. We show that the proposed approximation has a convergence-in-probability property to the solution of the original multi-layered model. We then carry out Bayesian inference using the preconditioned Crank-Nicolson algorith… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 38 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?