Crossbar resistive memory with the 1 Selector 1 Resistor (1S1R) structure is attractive for nonvolatile, high-density, and low-latency storage-class memory applications. As technology scales down to the single-nm regime, the increasing resistivity of wordline/bitline becomes a limiting factor to device reliability. This paper presents write/read communication channels while considering the line resistance and device variabilities by statistically relating the degraded write/read margins and the channel parameters. Binary asymmetric channel (BAC) models are proposed for the write/read operations.Simulations based on these models suggest that the bit-error rate of devices are highly non-uniform across the memory array. These models provide quantitative tools for evaluating the trade-offs between memory reliability and design parameters, such as array size, technology nodes, and aspect ratio, and also for designing coding-theoretic solutions that would be most effective for crossbar memory. Method for optimizing the read threshold is proposed to reduce the raw bit-error rate (RBER). We propose two schemes for efficient channel coding based on Bose-Chaudhuri-Hocquenghem (BCH) codes. An interleaved coding scheme is proposed to mitigate the non-uniformity of reliability and a location dependent coding framework is proposed to leverage this non-uniformity. Both of our proposed coding schemes effectively reduce the undetected bit-error rate (UBER).